본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

On the subpartitions of the ordinary partitions, II

  • 저자Byungchan Kim, Eunmi Kim.
  • 학술지Electronic Journal of Combinatorics 21(4)
  • 등재유형
  • 게재일자(2014)
In this note, we provide a new proof for the number of partitions of $n$ having subpartitions of length $\ell$ with gap $d$. Moreover, by generalizing the definition of a subpartition, we show what is counted by $q$-expansion \[ \prod_{n=1}^{\infty} \frac{1}{1-q^n} \sum_{n=0}^{\infty} (-1)^n q^{(an^2 + bn)/2} \] and how fast it grows. Moreover, we prove there is a special sign pattern for the coefficients of $q$-expansion \[ \prod_{n=1}^{\infty} \frac{1}{1-q^n} \left( 1 - 2 \sum_{n=0}^{\infty} (-1)^n q^{(an^2 + bn)/2} \right). \]
In this note, we provide a new proof for the number of partitions of $n$ having subpartitions of length $\ell$ with gap $d$. Moreover, by generalizing the definition of a subpartition, we show what is counted by $q$-expansion \[ \prod_{n=1}^{\infty} \frac{1}{1-q^n} \sum_{n=0}^{\infty} (-1)^n q^{(an^2 + bn)/2} \] and how fast it grows. Moreover, we prove there is a special sign pattern for the coefficients of $q$-expansion \[ \prod_{n=1}^{\infty} \frac{1}{1-q^n} \left( 1 - 2 \sum_{n=0}^{\infty} (-1)^n q^{(an^2 + bn)/2} \right). \]

이 페이지에서 제공하는 정보에 대해 만족하십니까?